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Calibration of Test Fixtures Using at Least
Two Standards

Kimmo J. Silvonen

Abstract —A study is made of the determination of the error networks

in the measurements of microwave circuits with arbitra~ test fixtures. A

general-purpose de-embedding method for known standards is shown.
Also a method for symmetrical test fixtures is described. The method

uses only two fixture standards, of which oue must be a two-port
standard with a transmission not equal to zero. A computer simulation
is used to compare the error sensitivities of the different calibration
algorithms.

I. INTRODUCTION

M ICROSTRIP and stripline circuits, semiconductor de-
vices, etc. are difficult to measure because they usually

cannot be connected directly to the network analyzer. Some
kind of test fixture with a pair of coaxial-to-microstrip
launchers is needed.

The fixture produces in the signal path a discontinuity that
affects the measurement greatly. The S parameters mea-
sured with the fixture have to be corrected in order to get
acceptable results. Precise knowledge of the electrical char-
acteristics of the fixture is essential to compensate the errors.

The fixture-coaxial transition is sometimes modeled ap-
proximately with transmission lines and lumped components.
The models are based on the S parameters measured with a
“thru” line standard. In the optimization the fixture is often
assumed to be symmetrical [1], [2]. Usually at least three
reference measurements with different standards are made
to caliarate the fixture-analyzer system (one-tier calibration).
If the analyzer is precalibrated alone at its coaxial terminals,
additional calibration measurements are made with the stan-
dards on the fixture (two-tier calibration).

Many calibration procedures have been published in the
literature [1], [3]-[9]. Most of them use transmission line and
short circuit or open circuit standards. Three or more stan-
dards are needed to accurately determine the error net-
works.

In this paper new general-purpose calibration procedures
will be shown using at least two fixture standards. The
method makes it possible to use transmission lines (not only
50 Q), microstrip open ends, gaps, etc. as calibration stan-
dards if their S parameters can be calculated. Also, the
dispersion of the transmission lines can be taken into ac-
count. The automatic network analyzer must be calibrated
first with its own standards. In the three-standard case the
method can be considered a simplification of the super TSD
method [4]. The two-standard case is applicable only with
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symmetrical test fixtures, which, however, are the most com-
mon type. The only restriction is that at least one of the
standards must have a transmission path. Furthermore, the
method is not very sensitive to the slight asymmetry in-
evitable in practice. The symmetry of the test fixture at
different frequencies can easily be tested by comparing the
measured reflection coefficients Sll and S22 of the
fixture-standard combination. In fact, total symmetry is not
necessarily needed. It is only required that the ratio of the
S21’S of each half of the fixture (error network) be approxi-
mately equal to 1 or be precisely known.

The symmetry assumption has also been used in refer-
ences [10]–[13], but they are all restricted to 50 Q transmis-
sion line standards. In [14] the error networks are assumed
to be both symmetric and matched. The widely used
TRL\LRL method assumes only the reflection standard to
be symmetric. A method to calculate the leakage and the
fringing capacitances of the fixture is outlined in [15]. The
crosstalk problem has not been treated in this paper.

There exist a number of different solutions for the calibra-
tion equations. Although the results are mathematically cor-
rect, they differ from each other as a consequence of mea-
surement and other errors. The existence of more than one
solution comes from the fact that in the measurements of
two or more calibration standards we often have more infor-
mation than strictly needed to calculate the error networks.
Different equations (2. . . 4/measured standard) use differ-
ent S parameters from the incorrect input data. The calcu-
lated results are thus dependent of the choice of the equa-
tions. Possible data reduction techniques are described in,
e.g., [11].

When the error networks are known, the device is mea-
sured and its S parameters can be de-embedded explicitly as
shown, e.g., in [4], [11], [16], and [17].

II. DE-EMBEDDING WITH AN ARBITRARY

TEST FIXTURE

A. Asymmetrical Case

The measurement network in Fig, 1 is assumed to be
connected to a calibrated network analyzer. To determine
the left and right error networks L and R at least three
calibration measurements, MA, MB, and Mc, are normally
made successively with standards A, B, and C. For conve-
nience two-port R is cascaded here in the opposite direction
to the other two-ports (port one on the right-hand side).

The following equations in terms of the S parameters can
be found for the measurement network shown in Fig. 1 using
the wave scattering matrices, flow graph analysis, or related
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-“m
tions more, It does not matter, whether they are one-ports or
two-ports. Formula (5) is the determinant of the matrix
containing equations (l), (2), (3), and (4) of standard A and
equations (2), (3), and (4) of standard B. The relation is
characteristic of this type of flow graph. It is also valid, if

-=H

standards A and B are nonreciprocal.
Thus two measurements MA and MB do not allow the

determination of all six unknown parameters (excluding the
leakage) in the error networks of the asymmetrical test

m= m ‘ktures”
B. Nearly Symmetrical Case, L21 = Rzl

1 1 If the ratio L21 /R21 is known or assumed to be equal to

-’m

1, asin symmetrical test fixtures, only two standards, A and
B, are needed to solve the unknowns. One of the standards
has to be a two-port. If L12 /R12 = L21 /R21 = 1, the solu-

ERROR
tion is automatically such that

lCALIBRATIONI ERROR CALIBRATION
NETWORK L [ STANDARDS : NETWORK R MEASUREMENTS L12L21 = L11L22 – AL = R11R22 – AR = R12RZ1 (6)

Fig. 1. Block diagram for the calibration of the test fixture. because in fact we have only five unknowns. If standard B is
a “dual one-port” standard, equations (lA), (2A), (3A), (4A),

techniques [4]:
(1~), and (4B) have to be used, because (2~) and (3~) are no
longer available. The solution is not singular, although in

(l)-(4) there are only three independent equations (reciproc-

(1- L#11)M411- R&A21M~12= Lll - A&tll (1)
ity). If both of the standards are two-ports, some other

21 equation combinations also are applicable.

L21
– L2zA12M~11 + (1 – R2#22)#14~12 = – ALA12 (2)

21

(1 - L22A11)M~21 - R22~A21M~22 = - ARR~A21 (3)
21 21

L21 L21
–L22A12M~21 +(1–R22A22)xM~22 = (R1l– AW22)—

21 R21

(4)

where AL = L11L22 – L12L21 and AR = R11R22 – R12R21.
The error networks can be identified in the general case

with no symmetry assumption by using e.g. equations (lA),

(2A) or (3,4), (4,4), (lJ, (4J, (Q, (4c), where 1A= equation
(1) with standard A. The equations needed can be chosen
from (l)-(4) in some other ways, too. They form a set of
seven linear equations for L1l, L22, AL, kR1l, kR2z, kAR,
and k = L21 /R21, from which the unknown two-ports L and
R can be solved.

The measurements with two different standards are not
totally independent, because, for any reciprocal error two-
ports L and R, M~12A21 = M~21A12, M~12B21 = M~21B12,
and

(M~22 - M~22)A21B12 *

[(AA + AB - A11B,2- B11A22)M~,2M.2,

-(AMA + AMB-M~llM~22

– MB11MA22)A12B21] = o. (5)

This means that after we have got three independent
equations from the measurement of the first two-port stan-
dard, every new standard gives only two independent equa-

C. Symmetrical Case

The symmetrical case means that matrices L and R are
identical, which is a valid assumption in many practical test
fixtures [1], [2], [9], [11]:

,R1l=L1l R,z = LIZ R21 = Lzl R22 = L22.

Equations (l)-(4) then form a set of four linear equations for
the unknowns L,,, L22, and AL:

L,*+ L22(A1, MA,, +A2,MA,2) 7AM1, =MA,, (7)

L22(A12M~11 + A22M~12) – ALA12 = M~12 (8)

L22(A11M~21 + A21M~22)– ALA21 = M~21 (9)

Lll +L22(A1zM~21 + A22M~z2)– ALA22= M~22. (10)

It can be shown that two measurements, MA and M8, are
needed to solve the unknown parameters. One measurement
would not be enough, even if the calibration standard were
asymmetrical and nonreciprocal. This is because the mea-
sured S parameters kf~i, and M~,, are related to each other
in the symmetrical case by the following equations:

(M~ll-kf~22)/t 12=( Ali-A22)M~12 (11)

M~12A21 = M~21A12 (12)

which means that in (7)-(10) there are only two linearly
independent equations. Three equations from the measure-
ments of at least two standards have to be chosen to solve
the unknowns. In acccirdance with inaccurate input data
(measurement error, inaccurately known standards) the solu-
tions differ at least slightly. If standard B has a nearly zero
transmission, as with, for example, practical open or short
circuit standards, (81)) and (911)become identically zero. The
nonsingular solutions are then (7A, 8A or 9A, 7B), (7A, 8,4 or
9A, lo,j), (8A or 94, 104, 7,1), (8A or 9A, 10~, 10B). These
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equation combinations also
and delay line standards.

D. TD Method

give the best results with “thru”

A special case of (5) is used in the TSD and LRL methods

[3], [5] to find the difference in phase and loss of the two
lines. If A II = Azz = Bll = B2~ = O, (5) can be written

2cosh(y~s~ – y~s~)

A21 Blz
——

B21 + ~

M~11M~z2 + M~11M~22 – AMA – AMB
——

A4~1zM~21
(13)

where y~, y~ = propagation constants of the transmission
lines, and s~,s~ = line lengths.

In the LRL method an unknown reflection standard can
be used if the length and the attenuation of one line is
known. In the thru-delay-method (TD) (l)-(4) can be solved
for 50 0 transmission line standards assuming
[10]-[13]:

AZ,
A4A11MB12– -@4~12M~11

Lll = A:l
M B12 – —M

B21 ’12

A ,2
MA22M~21 – ~M~21M~22

R,l=
12

A12
MB21 – j#’f,42,

12

A21
M A12– ~&fB,2

L22 =
21

A12(MA11– M~ll)

A12
M A21 – ~JfB21

R22 =
12

‘421( A4,422 – JfB22)

A21
M~12M~11 – —M~11MB12

B21
AL=

A12(MA11– M~ll)

Alz
MA21M~22 – ~MA22MB21

AR=
A21(M~22 – MB22)

k=l asin

(14)

(15)

(16)

(17)

(18)

(19)

where A12 = A21 = e –YASA and ratio ,412 /B12 = 4421 /B21 can

be calculated from (13). In addition to the measurement data
only e ‘~~s~ should be known. For a zero-length line A z, = 1,

E. Identification of the Phase of L2J

In most calibration methods L,,, L22, and AL are solved.
Normally we cannot identify L,2 and L21 separately, How-
ever, if matrix L(R) is reciprocal as usual,

1 2{1 2;2 1

,

Fig. 2. Example networks used in the error simulation.

TABLE I
NOMINAL COMPONENT VALUES OF THE RLC NETWORKS

RI [0] LI [nH] Cl [PFI R2 [01 Lz [nH] Cz [PFI

0.5 0.015 0.075 0.5 0.015 0.075

In the symmetrical case the choice of the sign does not
affect the de-embedding, but the same sign has to be used
for both error networks. Generally the phase (sign) of L 12
and L21 can be found on the basis of the mechanical
measures of the error networks or based on the measure-
ments made at a comparatively low frequency. Because the
question is only to choose one of the two angles separated by
180”, a rather crude method will do. A good way is to
compare the phase of L21 with the phase of a similar length

(s) of transmission line. If the characteristic impedance of
the line is approximately equal to the normalization
impedance, then arg [S21] = – ~s (~ = phase constant).

III. SIMULATION

A computer simulation was done for the networks in Fig 2.
The S parameters of the calibration standards and the
artificial measurement data were produced by the circuit
design program APLAC [18]. The S parameters were used as
the input data for the general-purpose calibration and de-
embedding program CADEP [19]. A simple RLC network

(Table 1) was assumed to represent the connection disconti-
nuities between the standards and the test fixture. The RLC
networks were included in the error two-ports. To simulate
some of the different errors appearing in practice the ele-
ment values of these networks were randomly changed at
each frequency during the calibration measurements. The
variation in each of the six lumped components was within
i 50’% of their nominal values with even distribution. The
RLC networks have so little effect on the overall S parame-
ters that even a *50% variation of the values do not destroy
the de-embedding process. The random values of Rl, Ll, Cl,
R2, L2, and C2 simulate errors of the S parameters of the
standards and their contact leads.

For simplicity, error networks L and R are transmission
lines with the RLC network connected to one end. The
slight asymmetry of the test fixture was caused by a 1%
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TABLE II
TRANSMISSION LINE PARAMETERS

Line Impedance Z [f)] Delay [ns] Attenuation [dB] Name

1.00

521

0.75

13,50

0.25

L 55 0.134 0.2 Left error network
R 55.55 0.13534 0.2 Right error network

A 50 0.025 0.1 (Nonzero-length) “thru”
D 50 0.050 0.2 Delay

L, R

WIJIC *** Ilser: Helsinki lJniv. of Tech. *** 23 Ott 1990 at 12:25:25
4

1 \ \
IS211

\

PHASE S21
L

. . . . . . . . . . . . . . . . ...... ..... ................... ..............................

l\ \

100

Pl#lSE

90

0

-90

511 “’
/~ ~ -+‘\ -- \--—— \ “ \

0.00 1 -1%0

1.00 2.40 3.00 5.20 6.60 8.00

Freq CGHZI

Fig. 3. Correct S parameters of the error networks. Solid line: L. Dashed line: R.

difference in the transmission line parameters (see Table II).
Also the left and right RLC networks have randomly differ-

, ent values.
The standards used were two transmission lines, an open

and a short circuit thus allowing a comparison with the TSD
(thru-short-delay), LRL (line-reflect-line), and TSO (thru-
short-open) methods [3], [5], [61, [7]. The parameters of the
transmission lines were as in Table II. The shorter line, A, is
named thru and the longer one, D, delay. The short circuit

(B) was modeled simply with a shunt inductance L,= 0.02
nH and the open circuit (C) with a small series capacitance
CO= 0.01 pF.

IV. DISCUSSION AND COMPARISON WITH THE

EARLIER METHODS

The calibration was performed with the normal TSD,
LRL, and TSO methods using the appropriate standards.
The TSD method was modified slightly to include as input
data the S parameters of the reflection standard [19]. So it
was not restricted to the short circuit termination. Also, the
calculations both with the super TSD-method [4] and with

(l)-(4) (solution: (lA), (2A), (4A), (1~), (4~), (1 ~), (4C.)) for
the same combinations of standards were done.

In the symmetrical case all eight nonsingular solutions
mentioned in subsection II-C of both the thru~short (TS) and
the thru-open (TO) methods were calculated. The same
solutions were also chosen in the thru-delay (TD) method.
The simulation results with some other solutions are essen-
tially, less accurate with the thru- and delay-line standards
than the eight chosen ones. According to the simulations, the
situation is not necessarily the same with other transmission
line standards (e.g. the same length, but different impedance).
The calculations with two standards were repeated using the
assumption L21 = R2[ (solution: (lA), (2A), (3A), (4A), (lB),

(4E)).
Some of the achieved results for L 11 and Llz = Lzl are

shown as dashed lines in Figs. 3-6, the sloping straight lines
representing the phase of Lzl and the sloping curved lines
the phase of L,,, The correct values are shown as solid lines.
The frequency band was restricted to 1–8 GHz (0.05 GHz
step), because the TSO method has proved to be very inaccu-
mte near the frequency in which the length of the “thru”
line is A /4, The super TSD method becomes singular at
A/2 line lengths. Thus the delay line was chosen to be only
72° longer than the “thru” line at 8 GHz. A difference of
180° would lead to singularities with the TD, TSD, and LRL
methods. In the TS and TO methods the “thru” line length
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Fig. 4. Dashed line: LRL solution of the left error network L using the thru-short-delay standards. Solid line: correct L.

1.00

S21

0.75

8.50

8.2!3

S11

0.00

Lii=Rii & Lij=Rij: TS

RPLRCw User: Helsinki Univ. of Tech. WI 23 Ott 1990 at 13:t!5:44——
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90

B
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Fig. 5. Dashed line: S parameters of the left error network f, achieved with the thru-short method (TS) assuming “total”

symmet~ only one of the best solutions (7A, 8A, 7H) is shuwn, Solid line: correct L.
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Lii=Rii & Li.j+?ij: TD

1.W3

S21

0.75

0.!50
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511

0.00

RPLflCw User: Helsinki Univ. of T;ch. -*** 23 Ott 1990 at 13:14:t39

\

PHASE S21
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PHRSE

90

0

-90
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Fig. 6. Dashed line: S parameters of the left error network L achieved with the thru-delay method (TD) assuming “total”
symmet~, only one of the best solutions (7A, 8A, 7B) is shown. Solid line: correct L.

TABLE III

VALUES OF THE SIMILARITY INDEX OF THE ERROR NETWORKS COMPARED WITH THE CORRECT S PARAMETERS

(MA, MB, lfc, J4D = MEASUREMENT DAT% A, B, C, D = S PARAMETERS OF THE STANDARDS

Calibration Method Input Data Standards 8L*103 8R * 103

TSD M~-MB-MD-B thru-short-delay 19 20
TSD (TOD) MA–MC-MD–C thru-open-delay 28 26
LRL (LSL) M~– MB– M~– A thru-short-deiay 19 18

LRL (LOL) M~-Mc-M~-A thru-open-delay 24 24
Super TSD M~– MB– M~– A-B-D thru-short-delay 37 35

Super TSD (TOD) M~– Mc-M~-A– C–D thru-open-delay 55 54
Super TSD (TSO) M~– M~--Mc-A-B– C thru-short-open 26 27

TSO M~–M~-M c-A-B-C thru-short-open 25 26

TSO eqs. (l)-(4) M~– M~-Mc-A– B–C thru-short-open 25 29

TSD eqs. (l)-(4) M~– Mfl-M~- A-B-D thru-short-delay 19 20
TOD eqs.(l)-(4) M~-Mc– M~– A–C– D thru-open-delay 28 34

TS L21 = R21 MA– MB-A-B thru-short 47 47

TO L21 = Rzl MA- MC-A-C thru-open 47 48

TD Lzl = Rzl M~– M~– A–D thru-delay 22 22

, TD eqs. (14)-(19) M~–M~–A thru-delay 22 21

TSL=R M~– M~-A– B thru-short 31..44 33...42

TOL=R M~– M<:– A–C thru-open 44..46 44...47

TDL=R M~– M[>– A–D thru-delay 22...27 22...27

should also be less than A/2, but a zero-length line cannot
be used.

A kind of similarity index has been used to compare the
results:

i

~~= &q.(las1112+ IM,*12+ 18s2,12+ 18s2212)

4~fr.q.
(21)

where 8Sij = the difference between the correct and the
calculated S-parameter value. Nfreq = 141 = number of fre-

quency points. So the index gives approximately the rms
value of the complex error of each S parameter. In the TS,
TO, and TD methods the results are dependent on the

choice of the equations. The reason for this is the incorrect
input data. The following index values were calculated ac-
cording to the results (Table III).

The correct S parameters of MA, MB, Mc, MD, L, and R
were calculated for a reference using the nominal compo-
nent values in Tdbles I and II. The similarity index values
between the input data and the correct S parameters are
shown in Table IV. The index value between L and R is
8S * 103 = 29, caused by the asymmetry (Table II).

The simulation results of both TD methods are nearly
comparable to those of the TSD and LRL methods. With
these input data, the ‘ES and TO methods give less accurate
results. The TO method is worst because of the increased
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TABLE IV
VALUES OF THE SIMILARITY INDEX BETWEEN THE CADEP INPUT

DATA AND THE CORRECT S PARAMETERS CALCULATED

WITH THE NOMINAL RLC VALUES

Measurement s,s*lo~

MA (“thru”) 20
MB (short) 5
Mc (open) 45
MD (delay) 24

error in the S parameters of measurement Mc (see Table
IV). In the symmetrical case there are slight differences
between the results of the eight solutions used. In practice
the results are dependent on the structure of the fixture and
on the existing errors. However, in other simulation exam-
ples the results have been very similar. Different error levels
between the calibration procedures can be partly explained
with different error levels in the S parameters of the input
data, as shown in Table IV.

V. CONCLUSIONS

The main advantage of the methods described here is that

the standards can be modeled freely and any idealization or

restriction to certain special standards is not necessary. Any

kind of standard can be used if the S parameters are known

or if a circuit model for the standard can be determined.

Also, the dispersion of the microstrip line standards can

easily be taken into account. The characteristic impedance

can be other than 50 Q. If the test fixture is symmetrical,
only two fixture standards are needed. Either one or both of
the standards must have a nonzero transmission path to
permit the solution.

With microstrip test fixtures, it is often difficult to use two
different line lengths if the length of the fixture cannot be
adjusted. This makes the use of the TSD or the LRL method
impossible or at least inconvenient. In such a case only one
transmission ,line in addition to a short or an open circuit
standard can be used. If two different (length or impedance)
lines can be used, the need for any reflection standard is

eliminated. The new methods can also be used for checking

the results achieved with any other procedure. However,

when the highest possible accuracy is needed, at least three

standards should be used.
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